Methods for moisture storage and transport property determination of autoclaved aerated concrete
 
More details
Hide details
1
Xella Technologie- und Forschungsgesellschaft, Section of Applied Research and Building Physics, Hohes Steinfeld 1, 14797 Kloster Lehnin, Germany
 
2
Dresden University of Technology, Institute of Building Climatology, Zellescher Weg 17, 01069 Dresden, Germany
 
 
Publication date: 2011-12-01
 
 
Cement Wapno Beton (Special 2011 16) 70-77 (2011)
 
KEYWORDS
ABSTRACT
The hygric performance of autoclaved aerated concrete is a key determinant for many other material properties as e.g. thermal conduction, carbonation or shrinkage behavior. Laboratory determination of hygric material properties, i.e. moisture storage and moisture transport, is hence a prerequisite and a standard in production and process supervision. In that context, prediction and simulation of the hygric material performance based on numerical calculation models has become a widely used research and design tool. However, for assessment of the material behavior under variable climatic conditions, the hygric material properties have to be determined in a fi rst step. In a second step, these properties have to be transformed into the non-linear coeffi cients required by these numerical calculation models. This paper is the fi rst out of two focusing on the fi rst step. It introduces different methods for moisture property determination. The methods cover the full range of possible moisture stages. Moisture storage and moisture transport is distinguished. For moisture transport, vapor and liquid phase transport is considered by different direct and indirect methods. The methods are applied for an aerated autoclaved concrete. The obtained data is shown and discussed. In a second step, described in a second paper [30], this data is used to derive the non-linear material functions required for sophisticated numerical simulation of the hygric material performance.
 
REFERENCES (37)
1.
Adan, O.C.G.: On the fungal defacement of interior fi nishes. Ph.D. thesis, Eindhoven University of Technology, the Nederlands, 1994.
 
2.
Bomberg, M., P azera, M., Plagge, R.: Analysis of Selected Water Absorption Coeffi cient Measurements. Journal of Thermal Envelope and Building Science 28, 227-243, 2005.
 
3.
Broken H. J. P .: Moisture transport in brick masonry: the grey area between bricks. Ph.D. thesis, Eindhoven University of Technology, the Nederlands, 1998.
 
4.
Burch, D.M., T homas, W.C. & Fanney, A.H.: Water Vapor Permeability Measurement of Common Building Materials. ASHRAE Transactions, 98, Pt. 2, 1992.
 
5.
Descamps, F.: Continuum and discrete modelling of isothermal water and air transfer in porous media. Ph.D. Thesis, Catholic University Leuven. Leuven, Belgium 1997.
 
6.
Fitz, C. & Kru s, M.: Normenwirrwarr bei der Bestimmung von feuchtetechnischen Kennwerten. IBP Mitteilung 441, 2004.
 
7.
Galbraith, G.H ., McLean, R.C. & Kelly, D.: Moisture permeability measurements under varying barometric pressure. Building Research and Information, 25, No. 6: 348-353, 1997.
 
8.
Häupl, P., Sto pp, H., Strangfeld, P.: Messverfahren und Messanordnung zur gleichzeitigen Bestimmung der Kapillarwasserleitfähigkeit und der gravimetrischen Feuchteleitfähigkeit von kapillarporösen Stoffen. Patentschrift DD 290 951 A5, ISSN 0433-6461, 1989.
 
9.
Janssen, H., Derlu yn, H., Carmeliet, J.: Moisture transfer through mortar joints: interface resistances or hygric propertiy changes? Proceedings to the 12th Symposium for Building Physics, Dresden University at Technology, Institute of Building Climatology, 2, 808-815, Dresden 2007.
 
10.
Johannesson, B. & Janz, M., 2002: Test of Four Different Experimental Methods to Determine Sorption Isotherms. Journal of Materials in Civil Engineering, 14, No. 6: 471-477, 2002.
 
11.
Klute, A.: The det ermination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Science, 113, No. 4: 264-276, 1972.
 
12.
Klute, A.: Water R etention: Laboratory Methods. In: Klute, A. (ed.). Methods of soil analysis. Part I. Physical and mineralogical methods. 2nd edition, No.9, Agronomy Series, Am. Soc. Agron., Soil Sci. Soc. Am. Madison. p. 635-662, 1986.
 
13.
Klute, A. & Dirkse n, C.: Hydraulic conductivity and diffusivity laboratory methods. In: Klute, A. (ed.). Methods of soil analysis. Part I. Physical and mineralogical methods. 2nd edition, No.9, Agronomy Series, Am. Soc. Agron., Soil Sci. Soc. Am. Madison. p. 687-734, 1986.
 
14.
Krus, M.: Feuchtet ransport- und Speicherkoeffi zienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Meßtechniken. Dissertation Universität Stuttgart 1995.
 
15.
Krus, M. & Holm, A.: Approximationsverfahren für die Bestimmung feuchtetechnischer Materialkennwerte. Proceedings to the 10th Symposium for Building Physics, Dresden University of Technology, Institute of Building Climatology, 2, 423-432, 1999.
 
16.
Künzel, H. M.: Verfahr en zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten. Dissertation, Universität Stuttgart, Fakultät Bauingenieur- und Vermessungswesen, 1994.
 
17.
Mukhopadhyaya, P., Kumaran , K., Normandin, N, Goudreau, P.: Effect of Surface Temperature on Water Absorption Coeffi cient of Building Materials. Journal of Thermal Envelope and Building Science, 26, No. 2: 179-195, 2002.
 
18.
Ojanen, T., Salonvaara, M. , Simonson, C.J.: Integration of simplifi ed drying tests and numerical simulation in moisture performance analysis of the building envelope. 6th Symposium on Building Physics in the Nordic Countries, 151-158, Trondheim 2002.
 
19.
Pel, L.: Moisture transpor t in building materials. Ph.D. thesis at Eindhoven University of Technology, 1995.
 
20.
Plagge R.: Bestimmung der ungesättigten hydraulischen Leitfähigkeit im Boden. Dissertation, Bodenökologie und Bodengenese, Heft 3, 1991.
 
21.
Plagge, R.: Development and d esign of a cup diffusion measurement device. unpublished, Institute of Building Climatology, Dresden University of Technology, 2001.
 
22.
Plagge, R., Cerny, R., Mathia sovsky, P.: Development of insulation Materials with specially designed properties for building renovation, Workpackage 3 - Laboratory Measurements. Final report of the INSUMAT project, Workpackage 3, Self publishing at TU Dresden, 2003.
 
23.
Plagge, R., Scheffl er, G., Gr unewald, J.: Automatic measurement of the water uptake behavior for building materials. 7th Symposium on Building Physics in the Nordic Countries, Reykjavik June 2005. 1, 15-22.
 
24.
Plagge, R., Scheffl er, G., Ni colai, A.: Experimental methods to derive hygrothermal material functions for numerical simulation tools. Buildings X Conference, Clearwater Beach FL, December 2007.
 
25.
Richards, L.A. & Fireman, M.:Pressure-Plate Apparatus for Measuring Moisture Sorption and Transmission by Soils. Soil Science, 56, No. 6: 395-404, 1943.
 
26.
Richards, R.F., Burch, D.M. &Thomas, W.C.: Water Vapor Sorption Measurements of Common Building Materials. ASHRAE Transactions 98, Pt. 2, 1992.
 
27.
Scheffl er, G., Plagge, R.: Dr ying behaviour of building materials. 7th Symposium on Building Physics in the Nordic Countries, Proceedings 1, 23-30, Reykjavik 2005.
 
28.
Scheffl er, G.A.: Validation o f hygrothermal material modelling under consideration of the hysteresis of moisture storage. PhD thesis, Institute of Building Climatology, Dresden University of Technology, 2008.
 
29.
Scheffl er, G.A., Plagge, R.: Introduction of a drying coeffi cient for building materials. Buildings XI Conference, Clearwater Beach FL, December 2010.
 
30.
Scheffl er, G.A.: Introductionof a full range model for liquid and vapor transport properties of autoclaved aerated concrete. Article submitted to the 5th International Autoclaved Aerated Concrete Conference in Bydgoszoz, Poland September 2011.
 
31.
Wilson, L.G. & Luthin, J.N.: Effect of air fl ow ahead of the wetting front on infi ltration. Soil Science, 96, 136-143, 1963.
 
32.
Wittmann, F.H. (ed.): Autoclaved Aerated Concrete, Moisture and Properties. Elsevier Scientifi c Publishing Company, Amsterdam, 1983.
 
33.
Worch, A.: The Behaviour of V apour Transfer on Building Material Surfaces: The Vapour Transfer Resistance, Journal of Thermal Envelope & Building Science 28-2, 2004.
 
34.
ISO 11274:1998 Soil quality – Determination of the water retention characteristics - Laboratory methods.
 
35.
ISO 12571 : 2000 Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties.
 
36.
ISO 12572 : 2001 Hygrothermal performance of building materials and products - Determination of water vapour transmission properties.
 
37.
ISO 15148 : 2002 Hygrothermal performance of building materials and products - Determination of water absorption coeffi cient by partial immersion.
 
ISSN:1425-8129
Journals System - logo
Scroll to top