Dual CUSUM chart for the quality control of concrete family
 
More details
Hide details
1
Katedra Geodezji i Geotechniki, Politechnika Rzeszowska
 
2
Katedra Konstrukcji Budowlanych, Politechnika Rzeszowska
 
 
Publication date: 2019-09-22
 
 
Cement Wapno Beton 24(4) 276-285 (2019)
 
KEYWORDS
ABSTRACT
Ready Mix Concrete plants supply a very wide range of concrete mixes, with different strengths, consistencies, admixtures and aggregate sizes. As a result, a small plant often does not produce enough of certain concrete mixes in order to apply the conformity criteria to a particular concrete class according to EN 206. Theoretically, the concrete family concept allows obtaining a sufficiently high number of strength results and allows a more continuous control of the production process and consequently a more rapid detection of significant changes in quality. Online quality monitoring refers to the monitoring of concrete quality in ready mix concrete during its production process, and the CUSUM charts are an effective statistical procedure control that can be used to monitor the quality of concrete for the concrete family during the production process. In this paper a CUSUM chart and the procedure involved, as well as related classes in the concrete family and the risks associated with them, has been presented. In this article, the 28-day characteristic cube compressive strengths of the various concrete classes and detailed information regarding the process of grouping in the concrete family and the consumer and producer risks associated with the production process, with a Cusum chart and OC and AOQ curves, has been presented.
 
REFERENCES (28)
1.
S. Debasis, D. Goutam, Design and Application of Risk Adjusted Cumulative Sum (RACUSUM) for Online Strength Monitoring of Ready Mixed Concrete, INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD, INDIA, W.P. No.2008-08-01, 2008.
 
2.
D. C. Montgomery, “The Economic Design of Control Charts: A Review and Literature Survey”, Journal of Quality Technology, 12, 75 – 87 (1980).
 
3.
D. C. Montgomery, W. H. Woodall, “Discussion on Statistically Based Process Monitoring and Control”, Journal of Quality Technology, 29, 121- 162 (1997).
 
4.
D. C. Montgomery, Introduction to statistical quality control, Wiley, New York 2008, NIST/SEMATECH e-handbook of statistical methods. (2003). “Anderson Darling test.” (http://www.itl.nist.gov/div898... section3/ eda35e.htm) (Dec. 14, 2007).
 
5.
D. Sarkar, B. Bhattacharjee, “ Quality Monitoring of Ready Mixed Concrete Using Cusum System” Indian Concrete Journal, 7, 1060-1065 (2003).
 
6.
A. L. Goel, S. M. Wu, “Economically Optimum Design of CUSUM Charts”, Management Science, 19, 1271 – 1282 (1973).
 
7.
D. M. Hawkins, D. H. Olwell, Cumulative sum charts and charting for quality improvement, Springer, New York 1998.
 
8.
J. Jasiczak, Kryteria kontroli stabilizacji wytrzymałości betonu na ściskanie określane metodami probabilistycznymi, WPP, Poznań 1992.
 
9.
N. L. Johnson, F. C. Leone, “Cumulative Sum Control Charts - Mathematical Principles Applied to their Construction and Use”, Industrial Quality Control, 18, 15 – 21 (1962).
 
10.
S. Steiner, R. Cook, “Monitoring Surgical Performance Using Risk Adjusted Cumulative Sum Charts”, University of Waterloo, London 2000.
 
11.
J. M. Lucas, “The Design and Use of V-Mask Control Schemes”, Journal of Quality Technology, 8, 1 – 12 (1976).
 
12.
W. H. Woodall, B. M. Adams, “The statistical design of CUSUM charts”, Qual. Eng., 5, 4, 559-570 (1993).
 
13.
W. H. Woodall, “The statistical design of quality control charts”, Statistician, 34, 2, 155-160 (1985).
 
14.
W. H. Woodall, “The design of CUSUM quality control charts”, Journal of Quality Technology, 18, 99-102 (1986).
 
15.
B. Badziąg, P. Kurzydym, Zastosowanie koncepcji rodzin betonów w kontroli zgodności betonu projektowanego, BTA, 50-55, 2009.
 
16.
G. Bajorek, M. Kiernia-Hnat, Kontrola zgodności betonu z zastosowaniem koncepcji rodzin betonów, BTA, 67-69, 2014.
 
17.
R. Caspeele, L. Taerwe, Conformity control of concrete based on the “concrete family” concept. 5thInternational Probabilistic Control, pp. 241 – 252, Ghent 2007.
 
18.
CEN: 13901: 2000, The use of the concept of concrete families for the production and conformity control of concrete, CEN Technical Report, 2000.
 
19.
L. Czarnecki, Beton według normy PN-EN 206-1 – komentarz, Polski Cement, Kraków, 2004.
 
20.
T. A. Harrison, The use of concrete families in the control of concrete. Proceedings International Congress ‘Creating with Concrete’, ‘Utilising Ready-mixed Concrete and Mortar’, pp. 269-276, 1999.
 
21.
M. Heim, D. Zeh, KonformitatskontrolleunterNutzung des Betonfamilienkonzepts - einBeispiel fur die praktischeUmsetzung, Beton, 5, 210-219 (2007).
 
22.
Z. Kohutek, Rodzina betonów - geneza pojęcia, terminologia, kryteria, ogólne zasady kreacji, Przegląd Budowlany, 10, 26- 31 (2010).
 
23.
L. J. Ping, S. G. Hong, G. L. Yong, Use of “concrete family” concept for conformity control of ready mixed concrete, 35th Conference on Our World in Concrete & Structures, Singapore, 25 - 27 August 2010.
 
24.
PN-EN 206: 2003 Beton. Wymagania, właściwości, produkcja i zgodność.
 
25.
I. Soroka, “An application of statistical procedures to quality control of concrete”, Mater. Struct., 15, 437-441 (2006).
 
26.
L. Taerwe, R. Caspeele, Conformity control of concrete: some basic aspects, Proceedings 4th International Probabilistic Symposium, pp. 57- 70, Berlin 2006.
 
27.
L. Taerwe, R. Caspeele, Conformity control of concrete based on the concrete family concept, DOI: 10.1002/best.200810114.
 
28.
J. M. Lucas, “Combined Shewhart-CUSUM Quality Control Schemes”, Journal of Quality Technology, 14, 51 – 59 (1982).
 
ISSN:1425-8129
Journals System - logo
Scroll to top