The risk of a different assessment of the performance of cementitious ceramic tile adhesives in the light of the results of interlaboratory comparisons - analysis of the relationship between the participants of the conformity assessment process of construction products
 
 
More details
Hide details
1
Research and Development Center, Atlas sp. z o.o., 2, Kilińskiego St., 91–421 Lodz, Poland
 
 
Publication date: 2023-03-10
 
 
Cement Wapno Beton 27(6) 372–385 (2022)
 
KEYWORDS
ABSTRACT
The article presents the current state of knowledge on the measurement of the adhesion of cementitious ceramic tile adhesives [CTAs] using the pull-off technique. The author discusses the results of the systematic literature review for the keywords of this article with particular attention to the interlaboratory comparisons [ILCs]. The cementitious CTAs adhesion measurements, particularly the results obtained in the ILCs, became the basis for analyzing the relationship between the participants of the conformity assessment of construction products. The analysis considers the links between science and industry and their environment resulting from formal and legal conditions related to the evaluation of construction products. Based on the study, the author proposes a mind map showing the relationships between potential participants in the CTAs compliance assessment process, with particular emphasis on ILCs. It indicates that using different criteria for evaluating the results of cementitious CTAs adhesion measurement by science and industry is not conducive to developing mutual relations between the two worlds.
 
REFERENCES (88)
1.
A. Alexander, D. P. Martin, C. Manolchev, K. Miller. University–industry collaboration: using meta-rules to overcome barriers to knowledge transfer. J. Technol. Transf. 45(2), 371-392 (2020). https://doi.org/10.1007/s10961....
 
2.
T. Bjerregaard. Industry and academia in convergence: Micro-institutional dimensions of R&D collaboration. Technovation 30(2), 100-108 (2010). https://doi.org/10.1016/j.tech....
 
3.
M. O’Dwyer, R. Filieri, L. O’Malley. Establishing successful university–industry collaborations: barriers and enablers deconstructed. J. Technol. Transf. 1-32 (2022). https://doi.org/10.1007/s10961....
 
4.
A. Filippetti, M. Savona. University–industry linkages and academic engagements: individual behaviours and firms’ barriers. Introduction to the special section. J. Technol. Transf. 42(4), 719-729 (2017). https://doi.org/10.1007/s10961....
 
5.
C. de Fuentes, G. Dutrénit. Best channels of academia–industry interaction for long-term benefit. Res. Policy 41(9), 1666-1682 (2012). https://doi.org/10.1016/j.resp....
 
6.
C. Bjursell, A. Engström. A Lewinian approach to managing barriers to university–industry collaboration. Higher Education Policy 32(1), 129-148 (2019). https://doi.org/10.1057/s41307....
 
7.
J. B. Passos, D. V. Enrique, C. C. Dutra, C. S. ten Caten. University industry collaboration process: a systematic review of literature. International Journal of Innovation Science, w druku (2022). https://doi.org/10.1108/IJIS-1....
 
8.
A. D. Daniel, L. Alves. University-industry technology transfer: the commercialization of university’s patents. Knowl. Manag. Res. Pract. 18(3), 276-296 (2020). https://doi.org/10.1080/147782....
 
9.
M. Jacuński. Relacje nauka-biznes w opinii pracowników uniwersytetu. Oczekiwania kontra rzeczywistość. Marketing Instytucji Naukowych i Badawczych 31(1), 41-62 (2019). https://doi.org/10.2478/minib-....
 
10.
The World Bank, GovData360, GCI 4.0:University-industry colLabouration in R&D, Waszyngton, USA, 2020, https://govdata360.worldbank.o..., (accessed: 13.09.2022).
 
11.
K. Schwab. The Global Competitiveness Report 2019, World Economic Forum, Genewa, Szwajcaria, 2019, https://www3.weforum.org/docs/..., (dostęp 13.09.2022), dodatkowo poszczególne wskaźniki dostępne online: www.weforum.org/gcr, (accessed: 13.09.2022).
 
12.
Trading Economics, Competitiveness Index – Europe, Nowy Jork, USA, 2020, https://tradingeconomics.com/c..., (accessed: 13.09.2022).
 
13.
A. Skala. Współpraca startupów z nauką w Polsce–wyniki badań. Studia BAS 2020, 1, 103-123. https://doi.org/10.31268/Studi....
 
14.
Regulation (EU) No. 305/2011 of the European Parliament and of the Council. https://eur-lex.europa.eu/lega... (accessed: 14.09.2022).
 
15.
Ustawa z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U.2016.1570).
 
16.
Regulation (EU) No. 2019/515 of the European Parliament and of the Council. https://eur-lex.europa.eu/lega... (accessed: 14.09.2022).
 
17.
Regulation (EU) No. 765/2008 of the European Parliament and of the Council. https://eur-lex.europa.eu/lega... 20210716 (accessed: 14.09.2022).
 
18.
Ustawa z dnia 13 kwietnia 2016 r. o systemach oceny zgodności i nadzoru rynku (Dz.U.2022.1854).
 
19.
M. Łukasik, B. Michałowski, J. Michalak. Assessment of the constancy of performance of cementitious adhesives for ceramic tiles: Analysis of the test results Commissioned by Polish Market Surveillance Authorities. Appl. Sci. 10(18), 6561 (2020). DOI: https://doi.org/10.3390/app101....
 
20.
M. Kulesza, M. Łukasik, B. Michałowski, J. Michalak. Risk related to the assessment and verification of the constancy of performance of construction products. Analysis of the results of the tests of cementitious adhesives for ceramic tiles commissioned by Polish construction supervision authorities in 2016-2020. Cem. Wapno Beton 25(6), 444-456 (2020). https://doi.org/10.32047/CWB.2....
 
21.
Consortium of European Building Control. The value of building control. Building Control Report 1 (2019). https://www.cebc.eu/public-cur... (accessed: 14.09.2022).
 
22.
K. I. Kouros, C. Z. Chrysostomou. Management of market surveillance authorities for construction products. Open Constr. Build. Technol. J. 14(1) 124-132 (2020). https://doi.org/10.2174/187483....
 
23.
Główny Urząd Miar, Słowniczek wybranych terminów stosowanych w metrologii i probiernictwie. GUM, Warszawa 2022. wydanie IV.
 
24.
A. L. Plant, R. J. Hanisch. Reproducibility and replicability in science, a metrology perspective. In National Academies of Sciences, Engineering and Medicine Committee on Reproducibility and Replicability in Science Report; National Academies of Sciences, Engineering and Medicine: Washington, DC, USA, 2018. https://nap.nationalacademies.... (accessed: 14.09.2022).
 
25.
M. Baker. 1,500 scientists lift the lid on reproducibility. Nature 533(7604) 352-454 (2016). https://doi.org/10.1038/533452....
 
26.
O. E. Gundersen. The reproducibility crisis is real. AI Mag. 41(3), 103-106 (2020). https://doi.org/10.1609/aimag.....
 
27.
D. Fanelli. Is science really facing a reproducibility crisis, and do we need it to?. Proc. Natl. Acad. Sci. U.S.A. 115(11), 2628-2631 (2018). https://doi.org/10.1073/pnas.1....
 
28.
M. R. Munafò, C. Chambers, A. Collins, L. Fortunato, M. Macleod. The reproducibility debate is an opportunity, not a crisis. BMC Res. Notes 15(1), 1-3 (2022). https://doi.org/10.1186/s13104....
 
29.
E. Szewczak. Ryzyko związane z niepewnością wyników badań i oceną zgodności wyrobów budowlanych. Mater. Bud. 470(10), 73–75 (2011).
 
30.
J. Michalak. Standards and assessment of construction products: case study of ceramic tile adhesives. Standards 2(2), 184-193 (2022). https://doi.org/10.3390/standa....
 
31.
M. Ćwiklicki, Metodyka przeglądu zakresu literatury (scoping review)/Methodological Aspects of Scoping Review. MPRA Paper 104370, University Library of Munich, Germany, 2020.
 
32.
J. Michalak. Ceramic tile adhesives from the producer’s perspective: a literature review. Ceramics 4, 378–390 (2021). https://doi.org/10.3390/cerami....
 
33.
European Committee for Standardization (CEN). EN 12004:2007+A1:2012 Adhesives for tiles – Requirements, evaluation of conformity, classification and designation. Brussels, Belgium, (2012).
 
34.
Główny Urząd Nadzoru Budowlanego, Informacja o kontroli rynku wyrobów budowlanych w 2021 r., GUNB, maj 2022. https://www.gunb.gov.pl/sites/... (dostęp 22.09.2022).
 
35.
J. Salustio, S. M. Torres, A. C. Melo, Â. J. C. Silva A. C. Azevedo, J. C. Tavares, M. S. Leal, J. M. Delgado. Mortar bond strength: a brief literature review, tests for analysis, new research needs and initial experiments. Materials 15, 2332 (2022). https://doi.org/10.3390/ma1506....
 
36.
A. Beeldens, D. van Gemert, H. Schorn, Y. Ohama, L. Czarnecki. From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Mater. Struct. 38, 601–607 (2005). https://doi.org/10.1007/BF0248....
 
37.
A. Dimmig-Osburg. Microstructure of PCC–Effects of polymer components and additives. In Proceedings of the 12th Int. Congr. Polym. Concr. Chuncheon, Korea, 27 September 2007, 239–248 (2007).
 
38.
L. Czarnecki, H. Schorn. Nanomonitoring of polymer cement concrete microstructure/Untersuchung des Mikrogefiiges von Polymer-Zement-Beton im Nanobereich. Restor. Build. Monum. 13, 141–152 (2007). https://doi.org/10.1515/rbm-20....
 
39.
E. Knapen, D. van Gemert. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem. Concr. Res. 39, 6–13 (2009). https://doi.org/10.1016/j.cemc....
 
40.
Y. Tian, Z. J. Li, H. Y. Ma, N Jin, N. G. Jin, An investigation on the microstructure formation of polymer modified mortars in the presence of polyacrylate latex. In Proceedings of the International RILEM Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, 5–7 September 2011, p. 7177 (2011).
 
41.
C. Stancu, D. Dębski, J. Michalak. Construction products between testing laboratory and market surveillance: case study of cementitious ceramic tile adhesives. Materials 15(17), 6167 (2022). https://doi.org/10.3390/ma1517....
 
42.
H. C. Curci, R. P. de Andrade, F. L. Maranhão, H. C. Gomes, E. M. Campello. Analysis of adhered tiling systems based on experimental evaluation and numerical modeling. Constr. Build. Mater. 325, 126746 (2022). https://doi.org/10.1016/j.conb....
 
43.
A. C. Melo, A. J. Costa e Silva, S. M. Torres, J. P. M. Q. Delgado, A. C. Azevedo. Influence of the contact area in the adherence of mortar–Ceramic tiles interface. Constr. Build. Mater. 243, 118274 (2020). https://doi.org/10.1016/j.conb....
 
44.
Y. Bai, P. A. M. Basheer, D. J. Cleland, A. E. Long. State-of-the-art applications of the pull-off test in civil engineering. Int. J. Struct. Eng. 1(1), 93-103 (2009). https://doi.org/10.1504/IJStru....
 
45.
A. C. Lopes, I. Flores-Colen, L. Silva. Variability of the pull-off technique for adhesion strength evaluation on ceramic tile claddings. J. Adhes. 91(10-11), 768-791 (2015). https://doi.org/10.1080/002184....
 
46.
N. M. M. Ramos, M. L. Simões, J. M. P. Q. Delgado, V. P. de Freitas. Reliability of the pull-off test for in situ evaluation of adhesion strength. Constr. Build. Mater. 31, 86-93 (2012). https://doi.org/10.1016/j.conb....
 
47.
T. Lourenço, L. Matias, P. Faria. Anomalies detection in adhesive wall tiling systems by infrared thermography. Constr. Build. Mater. 148, 419-428 (2017). https://doi.org/10.1016/j.conb....
 
48.
J. Souza, A. Silva, J. de Brito, E. Bauer. Application of a graphical method to predict the service life of adhesive ceramic external wall claddings in the city of Brasília, Brazil. J. Build. Eng. 19, 1-13 (2018). https://doi.org/10.1016/j.jobe....
 
49.
J. H. Lee, B. S. Kim, K. H. Oh, B. Jiang, X. He, B. I. Kim, B. S. K. Oh, S. Adhesion Strength Change Analysis Based on the Application Surface Area Ratio of Spot-Bonded Tiles on Vertical Walls of High Humidity Facilities. Appl. Sci. 11(12), 5357 (2021). https://doi.org/10.3390/app111....
 
50.
P. Liška, B. Nečasová, J. Šlanhof. Influence of technological procedures on mechanical properties of bonded joint. J. Adhes. Sci. 6(1), 1-20 (2018). https://doi.org/10.1186/s40563....
 
51.
M. Niziurska. Znaczenie właściwości płytek ceramicznych w zapewnieniu trwałości okładzin mocowanych zaprawami cementowymi. Prace ICiMB 14, 17-26 (2013).
 
52.
K. Nosal, M. Niziurska, M. Wieczorek. Wpływ zanieczyszczeń zawartych w wodzie przeznaczonej do sezonowania zapraw klejowych do płytek na ich przyczepność. Prace ICiMB 23, 61-70 (2015).
 
53.
European Committee for Standardization (CEN). EN 1348:2007. Adhesives for tiles – Determination of tensile adhesion strength for cementitious adhesives. Brussels, Belgium, (2007).
 
54.
R. Ghavidel, R. Madandoust, M. M. Ranjbar. Reliability of pull-off test for steel fiber reinforced self-compacting concrete. Measurement 73, 628-639 (2015). https://doi.org/10.1016/j.meas....
 
55.
K. Krawiec, K. Czernecka, K. Ryzyko odmiennej interpretacji zapisów norm w odniesieniu do badania przyczepności powłok metodą odrywania-analiza braku konsekwencji odnośnie stosowania grubości podłoża stalowego. Ochrona przed Korozją 60(9), 306-313 (2017). https://doi.org/10.15199/40.20....
 
56.
J. Sickfeld. Pull-off test, an internationally standardized method for adhesion testing-assessment of the relevance of test results. In: Adhesion Aspects of Polymeric Coatings 543-567 (1983). Springer, Boston, MA.
 
57.
W. G. Miller. The role of proficiency testing in achieving standardization and harmonization between laboratories. Clinic. Biochem. 42(4-5), 232-235 (2009). https://doi.org/10.1016/j.clin....
 
58.
F. de Medeiros Albano, C. S. ten Caten. Proficiency tests for laboratories: a systematic review. Accreditation Qual. Assur. 19(4), 245-257 (2014). https://doi.org/10.1007/s00769....
 
59.
C. Stancu. The 10th edition of interlaboratory tests for adhesives for ceramic tiles – an anniversary edition. In: Proc. 7th Int. Proficiency Test. Conf. Oradea, Romania, 10-13.09.2019; p. 99. (2019).
 
60.
C. Stancu, J. Michalak. Interlaboratory comparison as a source of information for the product evaluation process. Case Study of Ceramic Tiles Adhesives. Materials 15(1), 253 (2022). https://doi.org/10.3390/ma1501....
 
61.
C. Stancu. The importance of laboratories’ participation in interlaboratory comparison. Case study: Interlaboratory tests on adhesives for ceramic tiles. Rom. J. Mater. 52, 3-7 (2022).
 
62.
European Committee for Standardization (CEN). EN ISO/IEC 17043:2010 Conformity assessment – General requirements for proficiency testing. Brussels, Belgium, (2010).
 
63.
E. Szewczak. Does Standardisation Ensure a Reliable Assessment of the Performance of Construction Products? Standards 2(3), 260-275 (2022). https://doi.org/10.3390/standa....
 
64.
E. Szewczak, A. Bondarzewski. Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational? Accreditation Qual. Assur. 21(2), 91-100 (2016). https://doi.org/10.1007/s00769....
 
65.
E. Szewczak, A. Piekarczuk. Performance evaluation of the construction products as a research challenge. Small error–big difference in assessment? Bull. Polish Acad. Sci. Techn. Sci. 64(4) 675-686 (2016). https://doi.org/10.1515/bpasts....
 
66.
M. Kotyczka-Moranska, M. Mastalerz, A. Plis, M. Sciazko. Inter-laboratory proficiency testing of the measurement of gypsum parameters with small numbers of participants. Accreditation Qual. Assur. 25(5), 373-381 (2020). https://doi.org/10.1007/s00769....
 
67.
H. Källgren, M. Lauwaars, B. Magnusson, L. Pendrill, P. Taylor. Role of measurement uncertainty in conformity assessment in legal metrology and trade. Accreditation Qual. Assur. 8(12), 541-547 (2003). https://doi.org/10.1007/s00769....
 
68.
A. B. Forbes. Measurement uncertainty and optimized conformance assessment. Measurement 39(9), 808-814 (2006). https://doi.org/10.1016/j.meas....
 
69.
W. Hinrichs. The impact of measurement uncertainty on the producer’s and user’s risks, on classification and conformity assessment: an example based on tests on some construction products. Accreditation Qual. Assur. 15(5), 289-296 (2010). https://doi.org/10.1007/s00769....
 
70.
E. Desimoni, B. Brunetti. Uncertainty of measurement and conformity assessment: a review. Anal. Bioanal. Chem. 400(6), 1729-1741 (2011). https://doi.org/10.1007/s00216....
 
71.
L. R. Pendrill. Using measurement uncertainty in decision-making and conformity assessment. Metrologia 51(4), S206 (2014). https://doi.org/10.1088/0026-1....
 
72.
E. C. de Oliveira. Use of Measurement Uncertainty in Compliance Assessment with Regulatory Limits. Braz. J. Anal. Chem. 7, 1-2 (2020). https://doi.org/10.30744/brjac....
 
73.
L. Separovic, R. S. Simabukuro, A. R. Couto, M. L. G. Bertanha, F. R. Dias, A. Y. Sano, A. M. Caffaro, F. R. Lourenço. Measurement uncertainty and conformity assessment applied to drug and medicine analyses – a review. Crit. Rev. Anal. Chem. 1-16 (2021). https://doi.org/10.1080/104083....
 
74.
A. C. H. de Matos, E. C. de Oliveira. Risk assessment and optimisation of sulfur in marketing fuels. Fuel 313, 122705 (2022). https://doi.org/10.1016/j.fuel....
 
75.
L. P. Brandão, V. F. Silva, M. Bassi, E. C. de Oliveira. Risk assessment in monitoring of water analysis of a Brazilian river. Molecules 27(11), 3628 (2022). https://doi.org/10.3390/molecu....
 
76.
F. de Medeiros Albano, C. S. ten Caten. Analysis of the relationships between proficiency testing, validation of methods and estimation of measurement uncertainty: a qualitative study with experts. Accreditation Qual. Assur. 21(2), 161-166 (2016). https://doi.org/10.1007/s00769....
 
77.
P. N. Msibi, R. Mogale, M. de Waal, N. Ngcobo. Using e-Delphi to formulate and appraise the guidelines for women’s health concerns at a coal mine: A case study. Curationis 41(1), 1-6 (2018).
 
78.
Ustawa z dnia 7 lipca 1994 r. Prawo budowlane (Dz.U.2022.88).
 
79.
Regulation (EU) No. 1025/2012 of the European Parliament and of the Council. https://eur-lex.europa.eu/lega... (accessed: 11.10.2022).
 
80.
Rozporządzenie Rady Ministrów z dnia 23 grudnia 2002 r. w sprawie sposobu współdziałania Polskiego Komitetu Normalizacyjnego z organami administracji rządowej (Dz.U.2002.2040).
 
81.
Porozumienie z dnia 9 listopada 2016 roku pomiędzy PCA a GUNB w sprawie wykonywania zadań określonych przepisami ustawy z dnia 13 kwietnia 2016 r. o systemach oceny zgodności i nadzoru rynku (Dz. U. poz. 542 z późn. zm.) oraz ustawy z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. z 2016 r. poz. 1570) w zakresie dotyczącym stosowania akredytacji dla celów oceny zgodności wyrobów budowlanych i nadzoru nad rynkiem wyrobów budowlanych. https://www.pca.gov.pl/o-pca/i... (dostęp 16.10.2022).
 
82.
European Committee for Standardization (CEN). EN ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. Brussels, Belgium, (2017).
 
83.
R. Zhou, Y. Qin, A. Padoan, L. Sciacovelli, A. Aita, Q. Wang, M. Plebani. Different approaches for estimating measurement uncertainty: An effective tool for improving interpretation of results. Clin. Chim. Acta 503, 223-227 (2020). https://doi.org/10.1016/j.cca.....
 
84.
N. Labonnote, I. Depina, M. Veulemans, Development of a risk assessment methodology for market surveillance of building products. 5th Annual International Conference on Architecture and Civil Engineering (ACE 2017), Singapore, (2017). https://doi.org/10.5176/2301-3... (accessed: 22.10.2022).
 
85.
N. Chiganova. Correlation characteristics assessment of construction products reliability parameters. E3S Web Conf. 263, 02011 (2021). https://doi.org/10.1051/e3scon....
 
86.
A. Moncaster, D. Hinds, H. Cruickshank, P. M. Guthrie, N. Crishna, K. Baker, K. Beckmann, P. W. Jowitt. Knowledge exchange between academia and industry. Proc. Inst. Civil Eng. Eng. Sustain. 163(3), 167-174 (2010). https://doi.org/10.1680/ensu.2....
 
87.
M. Eliantonio, C. Cauffman. The legitimacy of standardisation as a regulatory technique in the EU – A cross-disciplinary and multi-level analysis: an introduction. In The Legitimacy of Standardisation as a Regulatory Technique; Edward Elgar Publishing: Cheltenham, Great Britain, 2020.
 
88.
G. P. Swann, The economics of standardization. University of Manchester, Manchester, Great Britain, 2000.
 
ISSN:1425-8129