Determination of chloride diffusion coefficient in cement-based materials – A review of experimental and modeling methods: Part III – EIS based methods
 
More details
Hide details
1
Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza w Krakowie, al. Mickiewicza 30, 30-059 Kraków
 
2
Instytut Badawczy Dróg i Mostów, ul. Instytutowa 1, 03-302 Warszawa
 
 
Publication date: 2017-05-01
 
 
Cement Wapno Beton 22(3) 219-229 (2017)
 
ACKNOWLEDGEMENTS
This work was supported by the Polish National Centre for Research and development Grant No. K1/IN1/25/153217/NCBiR/12
 
REFERENCES (34)
1.
. D.D. Macdonald, Refl ections on the history of electrochemical impedance spectroscopy, Electrochimica Acta 51 (2006), 1376–1388.
 
2.
A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer [Texts in Applied Mathematics 37], (2000).
 
3.
A.J. Bard, A.F. Faulkner, Electrochemical Methods − Fundamentals and Applications, 2nd edition, Wiley, 2001.
 
4.
M. Cabeza, P. Merino, A. Mirind, X.R. Nóvoa, I. Sánchez, Impedance spectroscopy study of hardened Portland cement pastes, Cement Concrete Res. 32 (2002) 881–891.
 
5.
W.J. McCarter, R. Brousseau, The A.C. response of hardened cement paste, Cement Concrete Res. 20 (1990) 891–900.
 
6.
Ping Gu, Ping Xie, J.J. Beaudoin, R. Brousseau, A.C. impedance spectroscopy (I) : A new equivalent circuit model for hydrated Portland cement paste, Cement Concrete Res. 22 (1992) 833–840.
 
7.
P. Xie, P. Gu, Z. Xu, J.J. Beaudoin, A rationalized a.c. impedance model for micro-structural characterization of hydrating cement systems, Cement Concrete Res. 23 (1993) 359–367.
 
8.
V.S. Ramachandran, J.J. Beaudoin, Study of early hydration of high alumina cement containing phosphoric acid by impedance spectroscopy, J. Mater. Sci. Lett. 14 (1995) 503–505.
 
9.
Z. Liu, J.J. Beaudoin, An assessment of the relative permeability of cement systems using AC impedance techniques, Cement Concrete Res. 29 (1999) 1085–1090.
 
10.
W.J. McCarter, S. Garvin, N. Bouzid, Impedance measurements on cement paste, J. Mater. Sci. Lett. 7 (1988), 1056−1057.
 
11.
C.A. Scuderi, T.O. Mason, H.M. Jennings, Impedance spectra of hydrating cement pastes, J. Mater. Sci. 26 (1991), 349−353.
 
12.
M. Shi, Z. Chen, J. Sun, Determination of chloride diffusivity in concrete by AC impedance spectroscopy, Cement and Concrete Research 29 (1999) 1111–1115. http://www.sciencedirect.com/s... S0008884699000794.
 
13.
R. Vedalakshmi, V. Saraswathy, Ha-Won Song, N. Palaniswamy, Determination of diffusion coeffi cient of chloride in concrete using Warburg diffusion coeffi cient, Corr. Sci. 51 (2009), 1299–1307.
 
14.
B. Díaz, X. R. Nóvoa, M. C. Pérez, Study of the chloride diffusion in mortar: A new method of determining diffusion coeffi cients based on impedance measurements, Cement and Concrete Composites 28 (2006) 237–245. URL http://www.sciencedirect.com/s....
 
15.
M. Cabeza, M. Keddam, X.R. Nóvoa, I. Sánchez, H. Takenouti, Impedance pectroscopy to characterize the pore structure during the hardening process of portland cement paste, Electrochim Acta 51 (2006), 1831–41.
 
16.
G. Song, Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete, Cem. Concr. Res. 30 (2000), 1723−1730.
 
17.
C.C. Yang, L.C. Wang, Materials Chemistry and Physics 85 (2004) 266.
 
18.
K. Krabbenhøft, J. Krabbenhøft, Application of the Poisson–Nernst– Planck equations to the migration test, Cem.Concr.Res., 38 (2008) 77–88.
 
19.
S. Goto, D.M. Roy, Diffusion of ions through hardened cement pastes, Cement and Concrete Research 11 (1981) 751–757.
 
20.
S.W. Yu, C.L. Page, Diffusion in cementitious materials: 1. Comparative study of chloride and oxygen diffusion in hydrated cement pastes, Cement and Concrete Research 21 (1991) 581–588.
 
21.
V.T. Ngala, C.L. Page, L.J. Parrott, S.W. Yu, Diffusion in cementitious materials: II. Further investigations of chloride and oxygen diffusion in wellcured OPC and OPC/30%PFA pastes, Cement and Concrete Research 25 (1995) 819–826.
 
22.
L. Tang, Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations, Cem. Concr. Res. 29, (1999), 1463-1468.
 
23.
T. Zhang, O.E. Gjørv, Cem. Concr. Res. 24 (1994) 1534-1548.
 
24.
J. Arnold, D.S. Kosson, A. Garrabrants, J.C.L. Meeussen, H.A. van der Sloot, Solution of the nonlinear Poisson–Boltzmann equation: Application to ionic diffusion in cementitious materials, Cem. Concr. Res. 44 (2013), 8−17.
 
25.
A. Atkinson, A.K. Nickerson, The diffusion of ions through watersaturated cement, J. Mater. Sci. 19 (1984), 3068−3078.
 
26.
L. Tang, Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations, Cem. Concr. Res. 29, (1999), 1463-1468.
 
27.
M. Castellote M, C. Andrade, C. Alonso, Measurement of the steady and non-steady-state chloride diffusion coeffi cients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests, Cem. Concr. Res., 31 (2001), 1411–1420.
 
28.
R.A. Patel, Q.T. Phung, S.C. Seetharam, J. Perko, D. Jacques, N. Maes, G. De Schutter, G. Ye, K. Van Breugel, Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches, Cem. Concr. Res. 90 (2016), 52−72.
 
29.
P. Spiesz, H.J.H. Brouwers, The apparent and effective chloride migration coeffi cients obtained in migration tests, Cem. Concr. Res. 48 (2013), 116–127.
 
30.
P. Spiesz, M.M. Ballari, H.J.H. Brouwers, RCM: A new model accounting for the non-linear binding isotherm and the non-equilibrium conditions between the free- and bound-chloride concentrations, Constr. Build. Mater. 27 (2012), 293–304.
 
31.
K. Szyszkiewicz, J. J. Jasielec, A. Królikowska, R. Filipek, Determination of Chloride Diffusion Coeffi cient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part I – Diffusion Methods, CementWapno-Beton, 1 (2017) 52-67.
 
32.
D. Franceschetti, J. Ross Macdonald, Electrode kinetics, equivalent circuits, and system characterization: small-signal conditions, J. Electroanal. Chem., 82 (1977) 271-301.
 
33.
G. Song, Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete, Cem. Concr. Res., 30 (2000), 1723-1730.
 
34.
Andrzej Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer 2014.
 
ISSN:1425-8129
Journals System - logo
Scroll to top