Self-healing of cracks in fi bre reinforced mortar beams made with high calcium fly ash
 
More details
Hide details
1
Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa
 
 
Publication date: 2012-01-01
 
 
Cement Wapno Beton 17(1) 38-49 (2012)
 
ACKNOWLEDGEMENTS
The experimental work concerning SEM-BSE analysis presented in this study was conducted in the Charles Pankow Concrete Materials Laboratory at Purdue University. The authors gratefully acknowledge the support at that part of the presented investigation. The authors are thankful to Bekaert Poland Sp. z o.o. for complimentary supply of microfi bres. The results presented in the paper have been obtained within the project “Innovative cement binders and concretes with addition of high calcium fl y ash” (project no POIG.01.01.02-24-005/09 with the Polish Ministry of Science and Higher Education) in the framework of the Operational Programme Innovative Economy 2007-2013.
 
REFERENCES (30)
1.
D. A. Abrams, Effects of rate of application of load on the compressive strength of concrete, Amer. Soc. For Testing of Materials, Proc. 17, part II, 364-77 (1917).
 
2.
D. J. Hannant, J. Edgington, Durability of steel fi bre concrete, w: Proc. RILEM Symp. “Fibre reinforced cement and concrete”, Lancaster; Construction Press, 159-169 (1975).
 
3.
D. J. Hannant, J. G. Keer, Autogeneous healing of thin cement based sheets. Cem. Concr. Res., 13, 533-538 (1983).
 
4.
R. J. Gray, Autogeneous healing of fi bre/matrix interfacial bond in fi - bre-reinforced mortar. Cem. Concr. Res., 14, 315-317 (1984).
 
5.
W. Zamorowski, The phenomenon of self-regeneration of concrete. The Int. J. of Cem. Comp. Lightweight Concr., 7, 2, 199-201 (1985).
 
6.
J. Kasperkiewicz, P. Stroeven, Observations on crack healing in concrete, in Proc. Int. Symp. “Brittle Matrix Composites 3” Warszawa, Appl. Sc.Publ., 164-173 (1991).
 
7.
S. Z. Qjan, J. Zhou, E. Schlangen, Infl uence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cem. Concr. Comp., 32, 686-693 (2010).
 
8.
A. Mor, P. J. M. Monteiro, W. T. Hetsre, Observations of healing of cracks in high-strength lightweight concrete. Cem. Concr. Aggr., 12, 2, 121-125 (1989).
 
9.
P. Schiessl, C. Reuter, Massgebende Einfl ussgrössen auf die Wasserdurchlässigkeit von gerissenen Stahlbetonbauteilen. Ann. Report, Institüt für Bauforschung, Aachen, 223-228 (1992).
 
10.
S. Jacobsen, E. J. Sellevold, Self healing of high strength concrete after deterioration by freeze/thaw. Cem. Concr. Res., 26, 1, 55-62 (1996).
 
11.
C. Edvardsen, Water permeability and autogeneous healing of cracks in concrete. ACI. Mat. J., 96, 4, 448-454 (1999).
 
12.
H. W. Reinhardt, M. Jooss, Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem. Concr. Res., 33, 981-985 (2003).
 
13.
S. Granger, A. Loukili, G. Pijaudier-Cabot, M. Behloul, Self healing of cracks in concrete from model material to usual concretes, in: 2nd Int. Symp. on Advances in Concrete through Science and Engineering., Quebec City, RILEM (2006).
 
14.
M. Şahmaran, S. B. Keskin, G. Ozerkan, I. O. Yaman, Self-healing of mechanically-loaded self consolidating concretes with high volumes of fl y ash. Cem. Concr. Comp., 30, 872-879 (2008).
 
15.
Wenhui Zhong, Wu Yao, Infl uence of damage degree on self-healing of concrete. Constr. Build. Mat., 22, 1137–114(2008).
 
16.
A. Hosoda, S. Komatsu, T. Ahn, T. Kishi, S. Ikeno, K. Kobayashi, Self healing properties with various crack widths under continuous water leakage, in: Concr. Repair, Rehab. and Retrofi t., II, Alexander et al. eds., Taylor and Francis, 221-227, (2009).
 
17.
S. Granger, G. Pijaudier, A. Loukili, D. Marlot, J. C. Lenain, Monitoring of cracking and healing in an ultra high performance cementitious material using the time reversal technique. Cem. Concr. Res., 39, 296–302 (2009).
 
18.
A. M. Brandt, Cement-based Composites, 2nd ed. Taylor & Francis, 526, (2009).
 
19.
L. L. Kan, H. S. Shi, A. R. Sakulich, V.C. Li, Self-healing characterization of engineered cementitious composite materials. ACI Mat. J., Nov.-Dec. 617-624 (2010).
 
20.
Y. Yang, E. H. Yang, V. C. Li, Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res., 41, 176-183 (2011).
 
21.
A. R. Sakulich, V. C. Li, Microscopic characterization of autogenous healing products in engineered cementitious composites (ECC). 34th Int. Conf. on Cement Microscopy, San Francisco, Ca. USA, April 17-20, 10 (2011).
 
22.
E. Herbert, V. C. Li, Self-healing of engineered cementitious composites in the natural environment. Int. Workshop HPFRCC 6, Ann Arbor, MI, USA, June 19-22, 559 (2011).
 
23.
S. S. Bang, J. K. Galinat, V. Ramakrishnan, Calcite precipitation induced by polyurethaneimmobilized Bacillus pasteurii, Enzyme and Microbial Technology 28, 404-409 (2001).
 
24.
N. R. Sottos, M. R. Kessler, and S. R. White, Self-healing structural composite materials. Composites Part A: Applied Science and Manufacturing, 34 (8), 743-753 (2004).
 
25.
W. Ramm, M. Biscoping, Autogenous healing and reinforcement corrosion of waterpenetrated separation cracks in reinforced concrete, Journal of Nuclear Engineering and Design 179, 191-200 (1998).
 
26.
S. Tsimas, A. Moutsatsou-Tsima, High-calcium fl y ash as the fourth constituent in concrete: problems, solutions and perspectives, Cem. Concr. Comp., 27, 231-237 (2005).
 
27.
S. Diamond, On the glass present in low-Ca and high-Ca fl y ash, Cem. Conr. Res., Vol. 12, 459-464 (1983).
 
28.
J. K. Tishmack, J. Olek, S. Dia mond, S.Sahu, Characterization of pore solutions expressed from high-calcium fl y-ash–water pastes, Fuel, 80, Issue 6, 815-819 (2001).
 
29.
J. Tishmack, J. Olek, S. Diamond, Characterization of High-Calcium Fly Ashes and Their Potential Infl uence on Ettringite Formation in Cementitious Systems, Cem., Concr. Aggreg., 21, Issue 1, 82-92 (1999).
 
30.
S. Diamond, The microstructure of cement paste and concrete – a visual primer, Cem. Concr. Comp., 26, 919-933 (2004).
 
ISSN:1425-8129
Journals System - logo
Scroll to top