Figure from article: A three-stage...
 
KEYWORDS
TOPICS
ABSTRACT
In this study, the most suitable locations for cement factory are identified by using the Geographical Information System and Multi-Criteria Decision Analysis [MCDM] in the Konya Plain Project [KPP] [Aksaray, Karaman, Kırıkkale, Kırşehir, Konya, Nevşehir, Niğde, Yozgat] provinces. The physical conditions of the region were determined based on the Environmental Impact Assessment Reports and expert opinions, and the suitable areas were chosen with technical, social, cultural, and economic criteria. In order to determine the most suitable regions, A three-stage decision-making process and Scoring System has been used for KPP Provinces. Overall, 56 suitable regions were decided among these provinces. The most suitable facility locations were chosen 7th and 6th region of Karaman province, 5th region of Kırıkkale province, 1st and 4th region of Konya Province.
REFERENCES (49)
1.
F. Onel, Organization Location Selection of Multi-Criteria Decision Making Methos of Implementation. Pamukkale University (2014). http://hdl.handle.net/11499/28....
 
2.
O. Demirdogen, B. Bilgili, Factors Affecting Location Selection Decisions for Organized Industrial Zones: The Case of Erzurum. J. Atatürk Univ. Soc. Sci. Inst. 4, (2004).
 
3.
K.L. Chang, S.K. Liao, T.W. Tseng, C.Y. Liao, An ANP based TOPSIS approach for Taiwanese service apartment location selection. Asia Pac. Manage. Rev. 20, 49–55 (2015). https://doi.org/10.1016/j.apmr....
 
4.
P. Heng-ming, W. Xiao-kang, W. Tie-li, L. Ya-hua, W. Jian-qiang, A multi-criteria decision support framework for inland nuclear power plant site selection under Z-Information: A case study in hunan province of China. Mathematics 8, (2020). https://doi.org/10.3390/math80....
 
5.
M. Bottero, E. Comino, V. Riggio, Application of the Analytic Hierarchy Process and the Analytic Network Process for the assessment of different wastewater treatment systems. Environ. Model. Softw. 26, 1211–1224 (2011). https://doi.org/10.1016/j.envs....
 
6.
C.Q. Cui, B. Wang, Y.X. Zhao, Q. Wang, Z.M. Sun, China’s regional sustainability assessment on mineral resources: Results from an improved analytic hierarchy process-based normal cloud model. J. Clean. Prod. 210, 105–120 (2019). https://doi.org/10.1016/j.jcle....
 
7.
M.A.B. Promentilla, T. Furuichi, K. Ishii, N. Tanikawa, A fuzzy analytic network process for multi-criteria evaluation of contaminated site remedial countermeasures. J. Environ. Manage. 88, 479–495 (2008). https://doi.org/10.1016/j.jenv....
 
8.
S. Kheybari, F.M. Rezaie, H. Farazmand, Analytic network process: An overview of applications. Appl. Math. Comput. 367, (2020). https://doi.org/10.1016/j.amc.....
 
9.
Y. Xu, Y. Li, L. Zheng, L. Cui, S. Li, W. Li, Y. Cai, Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy 207, (2020). https://doi.org/10.1016/j.ener....
 
10.
Z.H. Mei Peng, L. Song, An Analytic Network Process Approach for Rapid Loss Assessment of High Casualty Fires in China. Fire Technol. 50 (3), 1163–1179 (2013). https://doi.org/10.1007/s10694....
 
11.
M. Mokarram, D. Sathyamoorthy, Determination of suitable locations for the construction of gas power plant using multicriteria decision and Dempster–Shafer model in GIS. Energy Sources, Part A: Recovery, Util. Environ. Eff. 00, 1–16 (2019). https://doi.org/10.1080/155670....
 
12.
S. Saffarian, M. Shafiee, N. Zaredar, A Novel Approach Toward Natural and Anthropogenic Risk Assessment of Gas Power Plants. Hum. Ecol. Risk Assess. 20, 346–365 (2014). https://doi.org/10.1080/108070....
 
13.
Ü. Kurt, The fuzzy TOPSIS and generalized Choquet fuzzy integral algorithm for nuclear power plant site selection - A case study from Turkey. J. Nucl. Sci. Technol. 51, 1241–1255 (2014). https://doi.org/10.1080/002231....
 
14.
M. Erdogan, I. Kaya, A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey. Appl. Soft Comput. J. 39, 84–93 (2016). https://doi.org/10.1016/j.asoc....
 
15.
Z.M. Baskurt, C.C. Aydin, Nuclear power plant site selection by Weighted Linear Combination in GIS environment, Edirne, Turkey. Prog. Nucl. Energy 104, 85–101 (2018). https://doi.org/10.1016/j.pnuc....
 
16.
A. Devanand, M. Kraft, I.A. Karimi, Optimal site selection for modular nuclear power plants. Comput. Chem. Eng. 125, 339–350 (2019). https://doi.org/10.1016/j.comp....
 
17.
P.C. Basu, Site evaluation for nuclear power plants – The practices. Nucl. Eng. Des. 352, 110140 (2019). https://doi.org/10.1016/j.nuce....
 
18.
Y. Wu, F. Liu, Y. Huang, C. Xu, B. Zhang, Y. Ke, W. Jia, A two-stage decision framework for inland nuclear power plant site selection based on GIS and type-2 fuzzy PROMETHEE II: Case study in China. Energy Sci. Eng. 8, 1941–1961 (2020). https://doi.org/10.1002/ese3.6....
 
19.
A.A. Eluyemi, S. Sharma, S.J. Olotu, D.E. Falebita, A.A. Adepelumi, I.A. Tubosun, F.I. Ibitoye, S. Baruah, A GIS-based site investigation for nuclear power plants (NPPs) in Nigeria. Sci. Afr. 7, (2020). https://doi.org/10.1016/j.scia....
 
20.
U. Dermol, B. Kontić, Use of strategic environmental assessment in the site selection process for a radioactive waste disposal facility in Slovenia. J. Environ. Manage. 92, 43–52 (2011). https://doi.org/10.1016/j.jenv....
 
21.
P.F. Valdor, A.G. Gómez, V. Velarde, A. Puente, Can a GIS toolbox assess the environmental risk of oil spills? Implem2entation for oil facilities in harbors. J. Environ. Manage. 170, 105–115 (2016). https://doi.org/10.1016/j.jenv....
 
22.
J.V. Stone, Risk Perception Mapping and the Fermi II nuclear power plant: Toward an ethnography of social access to public participation in Great Lakes environmental management. Environ. Sci. Policy 4, 205–217 (2001). https://doi.org/10.1016/S1462-....
 
23.
O. Raboun, E. Chojnacki, C. Duffa, D.R. Insua, A. Tsoukiàs, Spatial risk assessment in case of multiple nuclear release scenarios. Socio-Econ. Plan. Sci. 70, 100721 (2020). https://doi.org/10.1016/j.seps....
 
24.
B. Nas, T. Cay, F. Iscan, A. Berktay, Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environ. Monit. Assess. 160, 491–500 (2010). https://doi.org/10.1007/s10661....
 
25.
M.N. Mokhtarian, S. Sadi-Nezhad, A. Makui, A new flexible and reliable interval valued fuzzy VIKOR method based on uncertainty risk reduction in decision making process: An application for determining a suitable location for digging some pits for municipal wet waste landfill. Comput. Ind. Eng. 78, 213–233 (2014). https://doi.org/10.1016/j.cie.....
 
26.
M. Rezaeimahmoudi, A. Esmaeli, A. Gharegozlu, H. Shabanian, L. Rokni, Application of geographical information system in disposal site selection for hazardous wastes. J. Environ. Health Sci. Eng. 12, 1–6 (2014). https://doi.org/10.1186/s40201....
 
27.
Y. Li, C. Lin, Y. Wang, X. Gao, T. Xie, R. Hai, X. Wang, X. Zhang, Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. J. Clean. Prod. 161, 1143–1152 (2017). https://doi.org/10.1016/j.jcle....
 
28.
H. Yousefi, Z. Javadzadeh, Y. Noorollahi, A. Yousefi-Sahzabi, Landfill site selection using a multi-criteria decision-making method: A case study of the salafcheghan special economic zone, Iran. Sustainability (Switzerland) 10, 1–16 (2018). https://doi.org/10.3390/su1004....
 
29.
H. Abd-El Monsef, S.E. Smith, Integrating remote sensing, geographic information system, and analytical hierarchy process for hazardous waste landfill site selection. Arab. J. Geosci. 12, 1–14 (2019). https://doi.org/10.1007/s12517....
 
30.
S. Rahimi, A. Hafezalkotob, S.M. Monavari, A. Hafezalkotob, R. Rahimi, Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. J. Clean. Prod. 248, 119186 (2020). https://doi.org/10.1016/j.jcle....
 
31.
C. Yagci, F. Iscan, Geographic Information Systems (Gis) Based Approach for Site Selection of Medical Waste Landfill in Konya. Int. J. Ecosyst. Ecol. Sci.-Ijees 6, 587–592 (2016).
 
32.
N.B. Chang, G. Parvathinathan, J.B. Breeden, Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manage. 87, 139–153 (2008). https://doi.org/10.1016/j.jenv....
 
33.
A. Singh, Remote sensing and GIS applications for municipal waste management. J. Environ. Manage. 243, 22–29 (2019). https://doi.org/10.1016/j.jenv....
 
34.
B. Zakaria, R. Abdullah, M.F. Ramli, P.A. Latif, Selection criteria using the Delphi method for siting an integrated hazardous waste disposal facility in Malaysia. J. Environ. Plan. Manage. 56, 512–530 (2013). https://doi.org/10.1080/096405....
 
35.
M. Gholamalifard, J. Phillips, M.J. Ghazizade, Evaluation of unmitigated options for municipal waste disposal site in Tehran, Iran using an integrated assessment approach. J. Environ. Plan. Manage. 60, 792–820 (2017). https://doi.org/10.1080/096405....
 
36.
G. Döberl, M. Ortmann, W. Frühwirth, Introducing a goal-oriented sustainability assessment method to support decision making in contaminated site management. Environ. Sci. Policy 25, 207–217 (2013). https://doi.org/10.1016/j.envs....
 
37.
A.V. Pekin, Environmental Pollution Control in Cement Industry. Report (1999). http://istanbul.imo.org.tr/res....
 
38.
F. Cebi, İr. Otay, Multi-Criteria and Multi-Stage Facility Location Selection under Interval Type-2 Fuzzy Environment: A Case Study for a Cement Factory. Int. J. Comput. Intell. Syst. 8, 330–344 (2015). https://doi.org/10.1080/187568....
 
39.
M. Mirhadi Fard, C.J. Kibert, A.R. Chini, Decision-making for sustainable location of a cement plant in the state of Florida. Int. J. Sust. Eng. 9, 76–92 (2016). https://doi.org/10.1080/193970....
 
40.
P.K. Dey, E.K. Ramcharan, Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. J. Environ. Manage. 88, 1384–1395 (2008). https://doi.org/10.1016/j.jenv....
 
41.
J. Malczewski, GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 20, 703–726 (2006). https://doi.org/10.1080/136588....
 
42.
T. Yomralıoglu, Geographical Information Technologies. (2010). https://web.itu.edu.tr/tahsin/....
 
43.
S. Sipahi, M. Timor, The analytic hierarchy process and analytic network process: An overview of applications. Manage. Decis. 48, 775–808 (2010). https://doi.org/10.1108/002517....
 
44.
T.L. Saaty, Axiomatization of the Analytic Hierarchy Process. 91–108 (1985). https://doi.org/10.1007/978-3-....
 
45.
Y. Yang, Y. Liu, L. Liu, Z. Liu, H. Wu, Monitoring global cement plants from space. Remote Sens. Environ. 302, 113954 (2024).
 
46.
F.V. Bekun, A.A. Alola, B.A. Gyamfi, P.A. Kwakwa, G.I.Z.E.M. Uzuner, Econometrics analysis on cement production and environmental quality in European Union countries. Int. J. Environ. Sci. Technol. 20 (4), 4265-4280 (2023).
 
47.
ArcGIS 2024, Kernel Density. Pobrane 24 listopada 2024 ze strony: https://pro.arcgis.com/en/pro-... (Ostatni dostęp: 24.11.2024).
 
48.
S.K. Sahoo, S.S. Goswami, A Comprehensive Review of Multiple Criteria Decision-Making (MCDM) Methods: Advancements, Applications, and Future Directions. Decision Making Advances 1 (1), 25-48 (2023).
 
49.
G. Mustafa, Assessing the environmental impact of cement plants in Beni Suef, Egypt: An Applied Study in Industrial Geography. Arab J. Geogr. Inf. Syst. 16 (1), (2023).
 
ISSN:1425-8129
Journals System - logo
Scroll to top