Analysis of the development of autogenous shrinkage of CEM I 42.5R and CEM III/A 42.5N cement pastes with different water to cement ratios
More details
Hide details
West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 70-311 Szczecin, Poland
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Publication date: 2023-06-07
Cement Wapno Beton 28(1) 40–55 (2023)
In concrete technology, cements with a high content of Portland clinker are increasingly being replaced by blended binders with a lower carbon footprint. Such binders include blastfurnace cements, which are successfully used in concretes designed for large-scale elements, self-compacting concretes, as well as for the precast concrete industry. Blast furnace cements exhibit lower strength gain relative to Portland cements and a lower heat of hydration. Composites that incorporate them are significantly more resistant to the occurrence of thermal stresses at the early stages of curing of concrete. This paper provides a comparative study of the development of autogenous shrinkage of cement pastes made from CEM I 42.5R and CEM III/A 42.5N with a variable w/c ratio using the dilatometric method on a proprietary instrument covered by the patent PL241667. Furthermore, tests on consistency, setting times and compressive strength were performed after 2, 7 and 28 days of curing. From the analyses carried out, it was found that cement pastes containing blast furnace cement show greater autogenous shrinkage over a period of 28 days compared to pastes containing Portland cement. The pozzolanic reaction of granulated blast furnace slag contributes to the increase in recorded autogenous shrinkage. An increase in the water-cement ratio has an impact on the decreased strength gain, and the value of autogenous shrinkage. The research results indicate the need to take autogenous shrinkage into account when designing high-performance concretes containing blast furnace cement due to the increased susceptibility to shrinkage microcracks and for the durability of the material.
The European Cement Association. Activity Report 2020, Belgium (2021).
P. Friedlingstein, et al. Global Carbon Budget 2019. Earth Syst. Sci. 11(4), 1783–838 (2019).
X. Liu, B. Ma, H. Tan, B. Gu, T. Zhang, P. Chen, H. Li, J. Mei, Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate. Constr. Build. Mater. 232(2), 117179 (2020).
L. Coppola, T. Bellezze, A. Belli, M.C. Bignozzi, F. Bolzoni, A. Brenna et al., Binders alternative to Portland cement and waste management for sustainable construction-part 1. J. Appl. Biomater. Funct. Mater. 16(3), 186–202 (2018).
J.L. Provis, S.A. Bernal, Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 44(1), 299–327 (2014).
G. Bastos, F. Patiño-Barbeito, F. Patiño-Cambeiro, J. Armesto, Nano-Inclusions Applied in Cement-Matrix Composites: A Review. Materials, 9(12), 1015 (2016).
A. Fiok, Sposoby produkcji wielkopiecowego żużla krystalicznego ze szczególnym uwzględnieniem warunków krajowych. Prace Komisji Żużlowej nr 15.
E. Tazawa, S. Miyazawa, Influence of cement and admixture on autogenous shrinkage of cement paste. Cem. Concr. Res. 25(2), 281–7 (1995).
Z. Liu, W. Hansen, Aggregate and slag cement effects on autogenous shrinkage in cementitious materials. Constr. Build. Mater. 121(1), 429–36 (2016).
P. Lura, Autogenous Deformation and Internal Curing of Concrete [doctoral thesis]: Delft, 2003.
D. Ballekere Kumarappa, S. Peethamparan, M. Ngami, Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. Concr. Res. 109, 1–9 (2018).
G. Fang, H. Bahrami, M. Zhang, Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h. Constr. Build. Mater. 171, 377–87 (2018).
T. Shi, N. Deng, X. Guo, W. Xu, S. Wang, Experimental Study on Deformation Behavior and Compressive Strength of Concrete Cast in Steel Tube Arches under Low-Temperature Conditions. Adv. Mater. Sci. Eng. 2020(6), 1–10 (2020).
A. Zieliński, Ulepszenie normowych metod pomiarowych do rejestracji skurczu autogenicznego materiałów o matrycy cementowej. MATERIAŁY BUDOWLANE, 1(10), 89–92 (2018).
E. Tazawa, Autogenous shrinkage of concrete proceedings of the international workshop organised by JCI. London: E & FN Spon; 1999.
E. Holt, Early age autogenous shrinkage of concrete: Dissertation 2001.
D. Saje, Reduction of the Early Autogenous Shrinkage of High Strength Concrete. Adv. Mater. Sci. Eng. 2015(4), 1–8 (2015).
D. Saje, B. Bandelj, J. Šušteršič, J. Lopatič, F. Saje, Shrinkage of Polypropylene Fiber-Reinforced High-Performance Concrete. J. Mater. Civil Eng. 23(7), 941–52 (2011).
A. Zieliński, Stanowisko do pomiaru odkształcalności materiałów o matrycy na bazie spoiwa mineralnego lub organicznego, patent PL241667 (2022).
G. Sant, M. Dehadrai, D. Bentz, P. Lura, C. Ferraris, J. Bullard, J. Weiss, Detecting the Fluid-to-Solid Transition in Cement Pastes: ACI Committee 236 (2009).
E. Tazawa, Japanese Concrete Institute Committee Report. Technical committee on autogenous shrinkage of concrete section 4 testing methods. Autoshrink (1998).
A.B. Hossain, J. Weiss, Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cem. Concr. Comp. 26(5), 531–40 (2004).
J.R. Tenório Filho, M.A. Pereira Gomes de Araújo, D. Snoeck, N. de Belie, Discussing Different Approaches for the Time-Zero as Start for Autogenous Shrinkage in Cement Pastes Containing Superabsorbent Polymers. Materials, 12(18), 2962 (2019).
B. Persson, G. Fagerlund. Self-desiccation and its importance in concrete technology: Proc. Int. Res. Seminar in Lund, 1997.
P. Lura, O.M. Jensen, K. van Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 33(2), 223–32 (2003).
D. M. Roy, G. M. ldorn. Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete. ACI J. Proc. 79(6), 444–57 (1982).