Xonotlite aggregate, part I: hydrothermal synthesis
More details
Hide details
Instytut Ceramiki i Materiałów Budowlanych, Oddział Materiałów Ogniotrwałych w Gliwicach
Publication date: 2019-09-24
Cement Wapno Beton 24(4) 259-266 (2019)
In connection with the perspective importance of xonotlite for the national economy, the study of its thermal synthesis, was undertaken. In the experiments the commonly accessible raw materials were used, namely the quartz sand, ground to the particles sizes under 0.2 μm and slaked lime. In order to totally eliminate the carbonates from lime, it was preliminary burned at 1000oC and the xonotlitu synthesis was conducted in the argon atmosphere. The experiments have shown that the hydrothermal synthesis, under the pressure of 3 MPa and during the period of 10 hours, is sufficient for the crystalline xonotlite formation, with the fibrous morphology. However, the time elongation to 24 hours, was changing very much the crystals sizes and morphology.
The fi nancial support from Institute of Ceramics and Building Materials, Refractory Division in Gliwice, is greatly acknowledged.
Q. Zheng, W. Wang., Calcium silicate based high effi ciency thermal insulation, Brit. Ceram., 99, 187-190 (2000).
F. Liu, L. Zeng, J. Cao, J. Li, Preparation of ultra-light xonotlite thermal insulation material using carbide slag, J. Wuhan Univ. Technol.- -Mater. Sci. Ed. 25, 295-297 (2010).
Q. Zheng, D.O. L. Chung, Microporous calcium silicate thermal insulator, Mater. Sci. Tech. Ser., 6, 7, 666-670 (1990).
T. Mitsuda, K. Sasaki, H. Ishida, Phase evolution during autoclaving process of aerated concrete, J. Am. Ceram. Soc., 75, 7, 1858-1863 (1992).
N. B. Milestone, Ghanbari K. Ahari, Hydrothermal processing of xonotlite based compositions, Adv. Appl. Ceram., 106, 6, 302-308 (2007).
N. M. P. Low, J. J. Beaudoin, Mechanical properties and microstructure of cement binders reinforced with synthesized xonotlite micro-fi bers, Cem. Concr. Res., 23, 1016-1028 (1993).
K. Takahashi, N. Yamasaki, K. Mishima, K. Matsuyama, H. Tomokage, Coating of pulp fi ber with xonotlite under hydrothermal conditions, J. Mater. Sci. Lett., 21, 1, 1521-1523 (2006).
H. L. Yang, W. Ni, D. Chen, G. Xu, T. Liang, L. Xu, Mechanism of low thermal conductivity of xonotlite-silica aerogel nanoporous super insulation material, J. Univ. Sci. Technol. B., 15, 5, 649-653 (2008).
Y. Arai, T. Yasue, S. Aoki, A. Kokumai, Y. Kojima, M. Kiso, H. Ota, Y. Tetsura, S. Ito, Y. Goto, Crystal shape and size controls of xonotlite, Gypsum & Lime 248, 17-25 (1994).
X. K. Li, J. Chang, A novel hydrothermal route to the synthesis of xonotlite nanofi bers and investigation on their bioactivity, J. Mater. Sci., 41, 4944-4947 (2006).
H. I. Hsiang, W. S. Chen, W. Ch. Huang, Pre-reaction temperature effect on C–S–H colloidal properties and xonotlite formation via steam assisted crystallization, Mater. Struct., 49, 3, 905-915 (2016).
E. Spudulis, V. Šavareika, A. Špokauskas, Infl uence of hydrothermal synthesis condition on xonotlite crystal morphology, Materials Science / Medziagotyra, 19, 2, 190-196 (2013).
F. Liu, J. X. Cao, B. Zhu, Effect of anion impurity on preparing xonotlite whiskers via hydrothermal synthesis, Adv. Mater. Res., 148-149, 1755- 1758 (2011).
F. Liu, X. D. Wang, J. X. Cao, Effect of Na+ on xonotlite crystals in hydrothermal synthesis, Int. J. Min. Met. Mater., 20, 1, 88-93 (2013).
H. Z. Yue, X. Wang, Z. Z. Yang, Ch. Ch. Wei, Dynamic hydrothermal synthesis of super-low density xonotlite thermal insulation materials from industrial quartz powder, Key Eng. Mat., 726 569-575 (2017).
A. Hartmann, D. Schulenberg, J. Ch. Buhl, Investigation of the transition reaction of tobermorite to xonotlite under infl uence of additives, Advances in Chemical Engineering and Science, 5, 197-214 (2015).
J. Cao, F. Liu, Q. Lin, Y. Zhang, Hydrothermal synthesis of xonotlite from carbide slag, Prog. Nat. Sci., 18, 1147-1153 (2008).
F. Liu, X. Wang, J. Cao, Effect of ultrasonic process on carbide slag activity and synthesized xonotlite, Physcs. Proc., 25, 56-62 (2012).
) J. Zou, C. Guo, C. Wei, Y. Jiang, Dynamic hydrothermal synthesis of xonotlite from acid-extracting residues of circulating fl uidized bed fl y ash, Res. Chem. Intermed., 42, 2, 519-530 (2016).
L. Black, K. Garbev, A. Stumm, Structure, Bonding and morphology of hydrothermally synthesized xonotlite, Adv. Appl. Ceram., 108, 3, 137- 144 (2009).
K. Balkatys, Infl uence of gypsum additive on the formation of calcium silicate hydrates in mixtures with C/S = 0.83 or 1.0, Materials Science Poland, 27, 1091-1101, (2009).
Q. Guangren, K. Guangliang, L. Heyu, L. Aimei, Mg-Xonotlite and its coexisting phases, Cem. Concr. Res., 27, 3, 315-320 (1997).
M. Li, H. Liang, Formation of micro-porous spherical particles of calcium silicate (xonotlite) in dynamic hydrothermal process, China Part., 2, 3, 124-127 (2004).
V. Alujević, A. Bejzak, A. Glasnović, Kinetic study of the hydrothermal reaction in CaO-quartz system, Cem. Concr. Res., 16, 5, 695-699 (1986).
K. Kunugiza, K. Tsukiyama, S. Teramura, Direct formation of xonotlite fi ber with continuous-type autoclave, Gypsum and Lime, 216, 288-294 (1988).
D. S. Klimesech, A. Ray, Autoclaved cement-quartz pastes with metakaolin additions, Adv. Cem. Bas. Mater., 7, 109-118 (1998).
T. Mitsuda, H. F. W. Taylor, Infl uence of aluminum on the conversion of calcium silicate hydrate gels into 11 Å tobermorite at 90°C and 120°C, Cem. Concr. Res., 5, 203-210 (1975).
Journals System - logo
Scroll to top