The influence of ionizing radiation on microstructure and properties of concrete shields – a review
More details
Hide details
IPPT PAN, Warszawa
Publication date: 2013-07-01
Cement Wapno Beton 18(4) 216-237 (2013)
Second part of the paper by A. M. Brandt, CWB 2/2013, 115-132. This work was prepared in the frame of the project „Durability and effi ciency of concrete shields against ionizing radiation in nuclear power structures”, PBS II, National Centre for Research and Development.
Z. Ablewicz, W. B. Dubrowski, Osłony przed promieniowaniem jonizującym, s. 300, Arkady, Warszawa 1986.
Z. Ablewicz, B. Jóźwik, Budownictwo w technice jądrowej, s. 313, Arkady, Warszawa 1978.
C. E. Acevedo, M. G. Serrato, Determining the effects of radiation on aging concrete structures of nuclear reactors – 10243, WM2010 Conference, March 7-11, Phoenix, AZ, USA 2010.
S. C. Alexander, Effects of irradiation on concrete. Final results. Atomic Energy Research Establishment, p. 34, Harwell 1963.
S. Alhajali, M. H. Kharita, B. Naoom, S. Yusef, M. Al Nassar, Estimation of the activation of local reactor shielding concretes. Progress in Nuclear Energy, 51, 374-377 (2009).
F. Bart, C. Cau-dit-Coumes, F. Frizon, S. Lorente, eds., Cement-based materials for nuclear waste storage, p. 264, Springer 2013.
A. W. Ch. Batten, Effect of irradiation on the strength of concrete. Atomic Energy Research Establishment, p. 13, Harwell 1960.
V.V. Bertero, G. W. Polivka, Infl uence of thermal exposures on mechanical characteristics of concrete. ACI, Concrete for Nuclear Reactors, SP 34, 505-531 (1972).
P. Bouniol, A. Aspart, Disappearance of oxygen in concrete under irradiation: the role of peroxides in radiolysis. Cem. & Concr. Res., 28, 11, 1669-1681 (1998).
A. M. Brandt, D. Jóźwiak-Niedźwiedzka, Diagnosis of Concrete quality by structural analysis, Advances in Civil Engineering Materials, 1, 1, 1–21 (2012).
A. M. Brandt, Beton jako materiał osłon w budownictwie związanym z energetyką jądrową. Cement Wapno Beton, 80, 2, 115-132 (2013).
R. J. Clifton, Predicting the remaining service life of concrete. NISTIR-4712, s. 74, 1991.
S. Divya Rani, M. Santhanam, Infl uence of moderately elevated temperatures on engineering properties of concrete used for nuclear reactor vaults. Cem. & Concr. Comp., 34, 917–923 (2012).
V. B. Dubrovskij, Sh. Sh. Ibragimov, A. Ya. Ladygin, B. K. Pergamenshckik, The effect of neutron irradiation on certain properties of refractory concrete. Atomnaya Energiya 21, pp. 108-112 (1966).
M. R. Elleuch, F. Dubois, J. Rappenau, Effects of neutron radiation on special concretes and their components. ACI SP34-51, vol. II, 1071-1108 (1972).
A. El-Sayed Abdo, E. Amin (2001) Distribution of temperature rise in biological shield due to thermal neutrons. Annals of Nuclear Energy, 28, 275-283 (2001).
A. Endo, Y. Harada, K. Kawasaki, M. Kikuchi, Measurement of depth distributions of 3H and 14C induced in concrete shielding of an electron accelerator facility. Applied Radiation and Isotopes, 60, 955-958 (2004).
D. L. Fillmore, Literature review of the effects of radiation and temperature on the aging of concrete. Idaho Nat. Eng. and Env. Lab., Idaho Falls, Idaho 83415, pp 26, 2004.
F. Frizon, S. Gin, C. Jegou, Mass transfer phenomena in nuclear waste packages, w: L.Q. Wang (ed.) Advances in Transport Phenomena, Springer-Verlag, Berlin-Heidelberg 2009.
S. Granata, A. Montagnint, Studies on behavior of concrete under irradiation. ACI Concrete for Nuclear Reactors SP-34, vol. II, 1163-1172 (1972).
B. S. Gray, The effect of reactor radiation on cements and concrete. Comm.of the European Communities, Luxembourg, 17-39 (1972).
F. Harbsmeier, W. Bols, Ion beam induced amorphization in α quartz. J. of Applied Physics, 83, 8, 4049-4054 (1998).
H. K. Hilsdorf, J. Kropp, H. J. Koch, The effects of nuclear radiation on the mechanical properties of concrete. ACI, SP 55-10, 223-251 (1978).
J. A. Houben, Radiation of mortar specimens. Comm.of the European Communities, Brüssels, 170-183 (1969).
T. Ichikawa, T. Kimura, Effect of nuclear radiation on alkali-silica reaction of concrete. J.of Nuclear Science and Technology, 44, 10, 1281-1284 (2007).
D. Jóźwiak-Niedźwiedzka, Infl uence of blended cements on the concrete resistance to carbonation, Proc. Int. Symp. Brittle Matrix Composites, BMC-10, 125-134, October 15-17, Warsaw 2012.
D. Jóźwiak-Niedźwiedzka, M. Sobczak, K. Gibas, Carbonation of concretes containing calcareous fl y ashes, Roads and Bridges - Drogi i Mosty, 12, 131-144 (2013).
O. Kontani, Y. Ichikawa, A. Ishizawa, M. Takizawa, O. Sato, Irradiation effects on concrete structure. Int. Symp. on the Ageing Manag. of Nucl. P. P., 173-182 (2010).
A. Łowinska-Kluge, P. Piszora, Effect of gamma irradiation on cement composites observed with XRD and SEM methods in the range of radiation dose 0 – 1409 MGy. Acta Physica Polonica A, 114, 399-411 (2008).
D. C. McDowall, The effect of gamma irradiation on the creep properties of concrete. Comm. of the European Communities, 55-69, Luxembourg 1971.
A. Morioka, S. Sato i in., Irradiation and penetration tests of boron- -doped low activation concrete using 2.45 and 14 MeV neutron sources. J. of Nuclear Mat. 329-333, 1619-1623 (2004).
D. R. Ochbelagh, S. A. Khani, H. G. Mosavinejad, Effect of gamma and lead as an additive material on the resistance and strength of concrete. Nuclear Engineering and Design 241, 2359-2363 (2011),.
A. Pedersen, (1971) Radiation damage in concrete – measurements on miniature specimen of cement mortar. Comm.of the European Communities, 5-18, Luxembourg 1971.
A. B. Phillips, D. E. Prull, R. A. Ristinen i in., Residual radioactivity in a cyclotron and its surroundings. Health Phys., 51, 337-342 (1986).
J. B. Pickett, (2000) Deactivation of the P, C and R reactor disassembly basins at the SRS WSRC-MS-2000-00640, Rev.1. Retrieved June 11, 2009, from 1&page=0&osti_id=772667.
B. Pomaro, V. A. Salomoni, F. Gramegna, G. Prete, C. E. Majorana, Radiation damage evaluation on concrete shieldingfor nuclear physics experiments. Ann. Solid Struct. Mech., 2, 123-142 (2011).
B. T. Price, C. C. Horton, K. T. Spinney, Radiation shielding. Int.Series of Monograph on Nuclear Energy, pp. 276-278, Pergamon Press, N. York, London, Paris, 1957.
K. Sakr, E. EL-Hakim, Effect of high temperature or fi re on heavy weight concrete properties. Cem. & Concr. Res., 35, 590-596 (2005).
V. Sopko, K. Trtík, F. Vodák, Infl uence of γ irradiation on concrete strength. Acta Polytechnica, 44, 1, 57-58 (2004).
J. F. Sommers, Gamma radiation damage of structural concrete immersed in water. Health Physics, Pergammon Press, 16, 503-508 (1969).
B. Stoces, P. Otopal, V. Juricka, J. Gabriel, The effect of radiationon the mechanical properties of concrete. Ceskoslovenska Akademie, transl. from the Czech by ORNL.
C. F. Van der Schaaf, Effect of heating and radiation on some properties of mortar and concrete specimens with different compositions. Com. of the Europ. Comm., Brussels, pp. 43-71 (1967).
F. Vodák, K. Trtík, V. Sopko, O. Kapičková, P. Demo, Effect of γ-irradiation on strength of concretefor nuclear-safety structures. Cem. & Concr. Res., 35, 1447-1451 (2005).
F. Vodák, V. Vydra, K. Trtík, O. Kapičková, Effect of gamma irradiation on properties of hardened cement paste. Materials and Structures,44, 101-107 (2011).
Y. Yarar, Activation characteristics of concrete shields containing colemanite. J. of Nuclear Materials, 233-237, 1511-1515 (1996).
T. Žagar, M. Božič, M. Ravnik, Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment. J. of Nuclear Mat., 335, 379-386 (2004).
ACI 349.3R-02 Evaluation of Existing Nuclear Safety-Related Concrete Structures.
DIN 25 413, teil 1-1991, Klassifi kation von Abschirmbetonen nach Elementanteilen, Abschirmung von Neutronenstrahlung.
DIN 25 413, teil 2-1991, Klassifi kation von Abschirmbetonen nach Elementanteilen, Abschirmung von Gammastrahlung.
Journals System - logo
Scroll to top