Limitation of the effects at alkali-aggregate reaction in concrete by the addition of zeolite
More details
Hide details
Politechnika Świętokrzyska, Kielce
Publication date: 2013-09-01
Cement Wapno Beton 18(5) 310-320 (2013)
W. Kurdowski, A. Garbacik, B. Trybalska, Reaktywność kilku składników mineralnych naturalnego kruszywa rzecznego, 72, 375, (2006).
W. Kurdowski, Chemia cementu i betonu, Kraków: Stowarzyszenie Producentów Cementu, PWN, Kraków 2010.
M.A.T.M Broekmans, Structural properties of quartz and their potential role for ASR, Mater. Charact. 53, 129-140 (2004).
I. Sims, P. Nixon, RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates – Petrographic method, Mater. Struct. 26, 480-496 (2003).
J. M. Ponce, O. R. Batic, Different manifestation of the alkali-silica reaction in concrete according to the kinetics of the reactive aggregate, Cem. Concr. Res. 36, 1148-1156 (2006).
J. Lindgård, Ö. Andiç-Çakır, I. Fernandes, T.F. Rønning, M.D.A Thomas, Alkali-silica reaction (ASR): Literature review on parameters infl uencing laboratory performance testing, Cem. Concr. Res 42, 223-243 (2012).
Š. Lukschová, R. Přikryl, Z. Pertold, Petrographic identifi cation of alkalisilica reactive aggregates in concrete from 20th century bridges, Constr. Build. Mater. 23, 734-741 (2009).
G. W. Ciciszwili, Natural zeolites, Warszawa, Wydawnictwo NaukowoTechniczne 2010.
M. Król, W. Mozgawa, W. Pichór, K. Barczyk , Materiały autoklawizowane z zeolitu naturalnego, Cement Wapno Beton, 80, 1 (2013).
M. Król, W. Mozgawa, W. Pichór, K. Barczyk , Materiały autoklawizowane z zeolitu naturalnego, Cement Wapno Beton, 80, 1 (2013). 10. X. Feng, N. Feng, Effect of natural zeolite on alkali-silica reaction, 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing 2004.
T. Ambuster, Dehydrataion mechanism of clinoptilolite: Single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 K Sample Dehyd 2 Data obtained from the ICSD, Am. Mineral., 78, 260–264 (1993).
C. Karakurt, İ.B. Topçu, Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction on sulfate resistance of concrete, Constr. Build. Mater., 25, 1789–1795 (2011).
B. Ahmadi, i M. Shekarch, Use of natural zeolite as a supplementary. cementitious material, Cem. Concr. Comp., 32, 134–141 (2010).
N. Feng, H. Jia, E. Chen, Study on the suppression effect of natural zeolite on expansion of concrete due to alkali-aggregate reaction, Mag. Concr. Res., 50, 17–24 (1998).
X. Feng, N. Feng, D. Han, Effect of the composite of natural Zeolite and fl y ash on alkali-silica reaction, Jr. Wuhan Uni. Tech. 18, 93–96 (2003).
N. Feng, G. Peng, Application of natural Zeolite to construction and building materials in China, Constr. Build. Mater., 19, 579-584 (2005).
Y.-F. Wang, F. Lin, W.-Q Pang, Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modifi ed zeolite, J. Hazard. Mater., 142, 160-164 (2007).
F. A. Nour El-Dien, M. M. Ali, M. A. Zayed, Thermodynamic study for the (NH4 – K) exchange on K-saturated clinoptilolite, Thermochim. Acta, 307, 65-75 (1997).
V. K Jha, SHayash, Modifi cation of natural Zeolite for its NH4 + retention capacity, J. Hazard. Mater., 169, 29-35 (2009) .
M. Sprynsky et Al., Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions, Adv. Colloid and Interface Sci., 284, 408-415 (2005).
Z. Owsiak, J. Zapała, P. Czapik, Sources of the gravel aggregate reaction with alkalis in concrete, cement Wapno Beton, 79, 149–154 (2012).
S. A. Marfi l, P. J. Maiza, Cem. Concr. Res., 23, 1283 (1993).
D. V. Hobbs, Alkali-silica reaction in concrete, Thomas Telford, London 1988.
S. Y. Hong, F. P Glasser, Alkali binding in cement pastes. Part I. C-S-H phase, Cem. Concr. Res., 29, 1893- 1903 (1999).
Journals System - logo
Scroll to top