Air-entrained concrete technology as an effective tool for increasing the limits of brick powder percentage in blended Portland cement binders
More details
Hide details
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, Žižkova 17, 602 00 Brno, Czech Republic
Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Veveří 95, 602 00 Brno, Czech Republic
Publication date: 2015-01-01
Cement Wapno Beton 20(1) 11-24 (2015)
This research has been supported partially by the Czech Science Foundation, under project No P105/12/G059, and partially the European Union’s “Operational Programme Research and Development for innovations”, No CZ.1.05/2.1.00/03.0097, as an activity of the regional Centre AdMaS “Advanced Materials, Structures and Technologies”.
T. C. Powers, The air requirement of frost-resistant concrete. Proceedings of the Highway Research Board, 29, 184– 211 (1949).
M. Pigeon, J. Marchand, R. Pleau, Frost resistant concrete. Constr. Build. Mat., 10, 339-348 (1996).
L. Du, K. J. Folliard, Mechanisms of air entrainment in concrete. Cem. Concr. Res. 35, 1463– 1471 (2005).
H. S. Shang, T. H. Yi, Freeze-Thaw Durability of Air-Entrained Concrete. The Scientifi c World Journal 2013; Article ID 650791, 6 pages, http://dx.doi. org/10.1155/2013/650791.
G. F. Peng, Q. Ma, H. M. Hu, R. Gao, Q. F. Yao, Y. F. Liu, The effects of air entrainment and pozzolans on frost resistance of 50–60 MPa grade concrete. Constr. Build. Mat., 21, 1034–1039 (2007).
B. Lazniewska-Piekarczyk, The type of air-entraining and viscosity modifying admixtures and porosity and frost durability of high performance self-compacting concrete. Constr. Build. Mat., 40, 659–671 (2013).
H. Garbalinska, A. Wygocka, Microstructure modifi cation of cement mortars: Effect on capillarity and frost-resistance. Constr. Build. Mat., 51, 258–266 (2014).
P. Van den Heede, J. Furniere, N. De Belie, Infl uence of air entraining agents on deicing salt scaling resistance and transport properties of high- -volume fl y ash concrete. Cem. Concr. Comp., 37, 293–303 (2013).
M. A. Glinicki, M. Zielinski, Frost salt scaling resistance of concrete containing CFBC fl y ash. Materials and Structures, 42, 993–1002 (2009).
Z. Giergiczny, M. A. Glinicki, M. Sokołowski, M. Zielinski, Air void system and frost-salt scaling of concrete containing slag-blended cement. Constr. Build. Mat., 23, 2451–2456 (2009).
K. Sisomphon, O. Copuroglu, A. L. A. Fraaij, Development of blast furnace slag mixtures against frost salt attack. Cem. Concr. Comp., 32, 630–638 (2010).
N. M. Al-Akhras, Durability of metakaolin concrete to sulfate attack. Cem. Concr. Res., 36, 1727–1734 (2006).
A. A. Ramezanianpour, M. J. Nadooshan, M. Peydayesh, A. M. Ramezanianpour, Effect of Entrained Air Voids on Salt Scaling Resistance of Concrete Containing a New Composite Cement. KSCE Journal of Civil Engineering, 18, 213-219 (2014).
J. Ambroise, M. Murat, J. Pera, Hydration reaction and hardening of calcined clays and related minerals. V – extension of the research and general conclusions. Cem. Concr. Res., 15, 261–268 (1985).
C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals activation, reactivity assessments and technological effects. Cem. Concr. Res. 25, 1691–702 (1995).
G. Baronio, L. Binda, Study of the pozzolanicity of some bricks and clays. Constr. Build. Mat., 11, 41–46 (1997).
R. D. Toledo Filho, J. P Gonçalves, B. B. Americano, E. M. R. Fairbairn, Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem. Concr. Res. 37, 1357–1365 (2007).
A. E. Lavat, M. A. Trezza, M. Poggi, Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29, 1666–1674 (2009).
L. A. Pereira-de-Oliveira, J. P. Castro-Gomes, P.M.S. Santos, The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mat., 31, 197–203 (2012).
M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production—present and future. Cem. Concr. Res., 41, 642–650 (2011).
F. Pacheco-Torgal, S. Jalali, Reusing ceramic wastes in concrete. Constr. Build. Mat., 24, 832–838 (2010).
E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fi ne-ground ceramics as supplementary cementitious material. Cem. Concr. Comp., 34, 55-61 (2012).
M. C. Bignozzi, A. Saccani, Ceramic waste as aggregate and supplementary cementing material: A combined action to contrast alkali silica reaction (ASR). Cem. Concr. Comp., 34, 1141–1148 (2012).
C. Medina, P. F. G. Banfi ll, M.I. Sánchez de Rojas, M. Frías, Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mat., 40, 822–831 (2013).
J. Katzer, Strength performance comparison of mortars made with waste fi ne aggregate and ceramic fume. Constr. Build. Mat., 47, 1–6 (2013).
S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science, 27, 307-325 (2004).
ČSN EN 12390-3, Testing of hardened concrete – Part 3: Compressive strength. Czech Offi ce for Standards, Metrology and Testing, Prague 2002.
B. L. Karihaloo, Fracture Mechanics of Concrete. Longman Scientifi c & Technical, New York 1995.
RILEM Committee 50-FMC, Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Test on Notched Beams. Materials and Structures, 18, 258–290 (1985).
E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free Water Intake as Means of Material Characterization. Journal of Building Physics, 33, 29-44 (2009).
M. K. Kumaran, Moisture Diffusivity of Building Materials from Water Absorption Measurements. Journal of Thermal Envelope and Building Science, 22, 349-355 (1999).
ČSN 73 1322/Z1:1968, Concrete testing – Hardened concrete – Frost resistance. Czech Offi ce for Standards, Metrology and Testing, Prague 2003.
ČSN 731326/Z1:1984, Determination of the resistance of the surface of concrete against water and de-icing salts. Czech Offi ce for Standards, Metrology and Testing, Prague 2003.
E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Constr. Build. Mat., 24, 1404-1411 (2010).
ČSN EN 12350-2, Testing of fresh concrete – Part 2: Slump test. Czech Offi ce for Standards, Metrology and Testing, Prague 2000.
V. Tydlitát, J. Zákoutský, P. Volfová, R. Černý, Hydration heat development in blended cements containing fi ne-ground ceramics. Thermochimica Acta, 543, 125–129 (2012).
M. O’Farrell, B. B. Sabir, S. Wild, Strength and chemical resistance of mortars containing brick manufacturing clays subjected to different treatments. Cem. Concr. Comp., 28, 790–799 (2006).
Z. Pavlík, L. Fiala, E. Vejmelková, R. Černý, Application of Effective Media Theory for Determination of Thermal Properties of Hollow Bricks as a Function of Moisture Content. Inter. J. Thermophysics, 34, 894-908 (2013).
Journals System - logo
Scroll to top