Effect of metakaolin addition on the properties of self compacting concrete for underwater construction
More details
Hide details
Katedra Inżynierii Materiałów Budowlanych, Wydział Budownictwa i Architektury, Politechnika Opolska
Publication date: 2015-11-01
Cement Wapno Beton 20(6) 393-400 (2015)
A. Yahia, K. H. Khayat, Experiment design to evaluate interaction of high-range water-reducer and antiwashout admixture in high-performance cement grout. Cem. Concr. Res., 31, 5, 749-757 (2001).
K. H. Khayat, Viscosity-enhancing admixtures for cement based materials – an overview. Cem. Concr. Compos., 20, 171-188 (1998).
M. Sonebi, M. Lachemi,K. M. A. Hossain, Optimization of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture. Constr. Build. Mat., 27, 126-138 (2013).
A. McLeish, Underwater concreting and repair. Halsted Press, Yew York, USA(1994).
R. S. Madandoust, Y. Mousavi, Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr. Build. Mat., 26, 752–760 (2012).
A. A. Assem, H. M. Lachemi,K. M. A. Hossain, Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cem. Concr. Compos., 34, 6, 801–807 (2012).
O. Karahan, K. M. A. Hossain, E. Ozbay, M. Lachemi, E. Sancak, Effect of metakaolin content on the properties self-consolidating lightweight concrete. Constr. Build. Mat., 26, 320–325 (2012).
K. A. Melo, A. M. P. Carneiro, Effect of Metakaolin’s fi nesses and content in self-consolidating concrete. Constr. Build. Mat., 24, 1529–1535 (2010).
M. Nehdi, S. Mindess, P. C. Aitcin, Rheology of high-performance concrete: Effect of ultrafi ne particles. Cem. Concr. Res., 28, 687-697 (1998).
H. H. Bache, Densifi ed cement-based ultrafi ne particle-based materials. Proc 2nd Int Conf in Superplasticizers in Concrete Ottawa, Canada, 185-213(1981).
S. Grzeszczyk, E. Janowska-Renkas, The influence of small particle on the fluidity of blast furnace slag cement paste containing superplasticizers. Constr. Build. Mat., 26, 411-415 (2012).
H. Uchikawa, Effect of blending component on hydration and structure formation. J. Res. Onoda Cem. Co., 38, 1, 1–79(1986).
C. S. Poon, L. Lam, S. C. Kou, Y. L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem. Concr. Res., 31,1301–1306 (2001).
H. Okamura, K. Ozawa, Mix-design for self-compacting concrete. Concrete Library of JSCE, 25, 107-120(1995).
Japan Society of Civil Engineers, Recommendations for design and construction of antiwashout underwater concrete, Concrete Library of JSCE 19 (1992).
X. Y. Sam, D. E. Berner, B. C. Gerwick, Assesment of underwater concrete technologies for in-the-wet construction of navigation structures. US Army Corps of Engineers, USA, Report INP-SL-1 (1999).
K. H. Khayat, Effects of Anti-Washout Admixtures on Fresh Concrete Properties. ACI Materials Journal, 92(2), 164-171 (1995).
C. K. Park, M. H. Noh, T. H. Park, Rheological properties of cementitious materials containing mineral admixtures. Cem. Concr. Res., 35, 5, 842–849(2005).
H. J. Hwang, S. H. Lee, E. Sakai, Rheological behavior of a slag cement paste prepared by adjusting the particle size distribution. Ceramic Processing Research, 10, 409–413 (2009).
E. Vejmelkova, M. Keppert, S. Grzeszczyk, B. Skaliński, R. Cerny, Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag. Constr. Build. Mat., 25, 1325-1331 (2011).
Journals System - logo
Scroll to top